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We use Wilsons weak-coupling “momentum” shell renormalization-group method to show that two-particle
interaction terms commonly neglected in bosonization of one-dimensional correlated electron systems with
open boundaries are indeed irrelevant in the renormalization-group sense. Our study provides a more solid
ground for many investigations of Luttinger liquids with open boundaries.
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I. INTRODUCTION

The electron-electron interaction has strong effects on the
low-energy physics of �quasi� one-dimensional �1D� metals.
Such systems cannot be described within Landau’s-Fermi-
liquid �FL� theory but rather form a different “universality”
class: the Luttinger liquids �LLs�.1 Already decades ago, the
importance of local single-particle inhomogeneities in LLs,
allowing for electron backscattering with momentum transfer
2kF �were kF is the Fermi momentum�, was emphasized.2,3

Their relevance became even more apparent after it was
shown that on low-energy scales, a LL �with repulsive two-
particle interaction� with a single local impurity in many
respects behaves as if the chain was cut in two at the position
of the impurity with open-boundary conditions at the end
points.4,5 This led to a number of studies on the physics of
LLs with open boundaries6–10 mainly using the method of
bosonization.1,12

The Tomonaga-Luttinger model1 is a translationally in-
variant �no inhomogeneities� continuum model within the LL
universality class for which all correlation functions can be
computed exactly by bosonization. In the context of bulk LL
physics, it plays a role similar to the noninteracting electron
gas for FL physics.1 In this model, the 2kF two-particle scat-
tering process of spin-up and spin-down electrons is ne-
glected. All the other low-energy scattering process can be
written as quadratic forms in the bosonic densities of the
right- �around kF� and left-moving �around −kF� fermions.
Furthermore, after linearization of the single-particle disper-
sion, also the kinetic energy is quadratic in the bosonic
densities1,12 and the remaining Hamiltonian is that of nonin-
teracting bosons. Neglecting the above 2kF scattering process
leads to an additional conservation law, namely, the “local”
�in momentum space� spin around the two Fermi points �kF,
which is central to the exact solution of the Tomonaga-
Luttinger model. In the literature, one finds two arguments
why this so-called g1,� term can be neglected. Either one
follows the original idea of Tomonaga13 and assumes a two-
particle interaction, which is sufficiently smooth and long
ranged in real space �suppressed screening� such that its Fou-
rier component at 2kF vanishes or, more generally, one
adopts the so-called g-ology renormalization-group �RG� ap-
proach of Sólyom.14 In this, it is shown that in an important
part of the parameter space g1,� is irrelevant in the RG sense.
The solution g1,�=0 is a stable fixed point of the RG flow.14

To �qualitatively� understand the low-energy physics, the
g1,� term can thus be neglected. It only affects the numerical
values of the other fixed-point couplings.15

For open-boundary conditions, the single-particle quan-
tum number k, in which the noninteracting problem is diag-
onal �see below�, no longer corresponds to the momentum.
Therefore, the two-particle scattering terms appearing in this
natural basis have a form different from those of the transla-
tionally invariant case. Also for LLs with open-boundary
conditions, the Hamiltonian contains two-particle scattering
terms, which cannot be written as quadratic forms in bosonic
densities, when considering a general spin-conserving two-
particle interaction. It was shown10 that these terms vanish if
Tomonaga’s rather specific assumption of an interaction,
which is smooth in real space, is made. Then open-boundary
bosonization can be used to compute all correlation functions
of the open-boundary analog of the Tomonaga-Luttinger
model.6–11 Surprisingly, an RG analysis for more general
two-particle interactions similar to Sólyoms approach was so
far not discussed in the standard literature on open-boundary
bosonization. In the present Brief Report, we close this gap.
Using Wilsons “momentum” shell RG in weak coupling,16,17

we show that all two-particle scattering terms naturally, aris-
ing in a low-energy analysis of a 1D system with general
two-particle interaction and open boundaries, which cannot
be written as quadratic forms in the bosonic densities, are
RG irrelevant �open-boundary g-ology analysis�. We demon-
strate that the RG flow equations are the same as the ones of
the translationally invariant g-ology model. In analogy to
this, the RG irrelevant coupling constants only affect the
fixed-point couplings of the terms quadratic in the bosons
and can thus be neglected for a qualitative understanding of
the low-energy physics of LLs with open boundaries. Our
analysis puts many of the studies of LLs with open bound-
aries on a more solid ground.

II. MODEL

To be specific, we consider the 1D electron gas on a line
between x=0 and x=L with a general sufficiently regular
two-particle interaction

V̂ =
1

2�
s,s�
�

0

L

dx�
0

L

dx��s
†�x��s�

† �x��Vs,s��x − x���s��x���s�x� ,

where s , s� denote the spin. The noninteracting one-particle
eigenstates are given by standing waves �open boundaries�
�n�x�=�2 /L sin�knx�, with quantum numbers kn=n� /L, n
�N. We emphasize that for open boundaries, only right-
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moving electrons with a positive Fermi velocity vF=kF /me
appear, where me denotes the electron mass. The field opera-
tor is given by �s

�†��x�=�n=1
� �n�x�an,s

�†� with the creation and
annihilation operators an,s

�†� of electrons in the noninteracting
eigenstates. We now closely follow Ref. 10 to rewrite the
interacting part of the Hamiltonian as

V̂ =
1

2�
s,s�

�
n,m,n�,m�

vn,m,n�,m�
s,s� an,s

† am,s�
† am�,s�an�,s,

with the matrix elements

vn,m,n�,m�
s,s� = �Fs,s��kn − kn�,km − km�� − Fs,s��kn − kn�,km + km��

− Fs,s��kn + kn�,km − km��

+ Fs,s��kn + kn�,km + km���/L , �1�

where

Fs,s��q,q�� =
1

L
�

0

L

dx�
0

L

dx� cos�qx�Vs,s��x − x��cos�q�x�� .

�2�

The kinetic part of the Hamiltonian Ĥ= T̂+ V̂ is given by

T̂ = �
s

�
n

�kn
an,s

† an,s,

with the single-particle dispersion �k=k2 / �2me�.

III. PERTURBATIVE WILSON RG

To analyze the Hamiltonian Ĥ using a Wilson RG, we

consider the action S�	̄ ,	� appearing in the imaginary time
functional-integral representation of the grand canonical par-
tition function,

S�	̄,	� = S0 + SI = − �
s

�
n

�
j

	̄s�kn,
 j��G0�kn,
 j��−1	s�kn,
 j�

+ �−1�
s,s�

�
n,m,n�,m�

�
i,j,i�,j�

�i+j,i�+j�vn,m,n�,m�
s,s� 	̄s�kn,
i�	̄s��km,
 j�	s��km�,
 j��	s�kn�,
i�� ,

with Graßmann variables 	, 	̄, Matsubara frequencies 
 j,
the noninteracting propagator G0�k ,
�= �i
−�k+�−1 � is
the chemical potential�, and the inverse temperature �. Here
we will only be interested in the behavior at zero temperature
��→�� with =�F=kF

2 / �2me�. In this case, we obtain �k
−=vF�k−kF�+ �k−kF�2 / �2me�.

We now follow the standard steps of the perturbative Wil-
son k-shell RG �ref. 17�: �i� separating the Graßmann fields
	=	�+	� into fast modes 	� �relative to the Fermi
point� with � /b� �k−kF��� and slow ones 	�, �ii� inte-
grating out the fast modes 	� perturbatively, �iii� rescaling
the quantum numbers k̃=k−kF �k̃�=bk̃� and the Matsubara
frequencies �
�=b
� �Ref. 18�, and �iv� rescaling the Graß-
mann fields 	��k̃�+kF ,
��=�−1	��k̃� /b+kF ,
� /b�.

We first consider the noninteracting case. Then the action
can naturally be written as S0=S0

��	̄� ,	��+S0
��	̄� ,	��

and the second step of the RG procedure only leads to a
constant in the partition function. Therefore, the rescaling is
the only relevant step. Choosing �=b1/2, the i
−vF�k−kF�
part of the noninteracting action remains invariant, while the
quadratic term of the dispersion vanishes as 1 /b for large b.
It is RG irrelevant for the low-energy physics and from now
on we work with G0�k ,
�= �i
−vF�k−kF��−1. The standard
linearization can thus be justified by the RG. Note that to
avoid proliferation of symbols, we do not introduce another
one for the free propagator of the model with linearized dis-
persion.

Next we study the flow of the quartic part of the action.
As usual in a weak-coupling RG to compute 	e−SI
S0

�, where

the index refers to taking the expectation value with respect
to the fast mode part of the noninteracting action, we use a
cumulant expansion

ln	e−SI
S0
� = − 	SI
S0

� +
1

2
�	SI

2
S0
� − 	SI
S0

�
2 � + . . . . �3�

On tree level �first term of Eq. �3�� and for low-energy scales
�b→��, the RG steps lead similarly to the translational in-
variant case to a two-particle interaction, which is purely
local in real space Vs,s��x−x��→Vs,s��0���x−x��. All correc-
tion terms are subleading.17 Then the integrals in Eq. �2� can
be performed leading to

Fs,s��q,q�� = Vs,s��0���q,q� + �q,−q��/2.

This has to be contrasted to the case with periodic boundary
conditions, in which only the second Kronecker delta
appears and the interaction matrix element only has the
contribution coming from Fs,s��kn−kn� ,km−km�� with k
being the momentum.10 Since for open boundaries all
the incoming and outgoing quantum numbers must be
close to the single Fermi point, only the Kronecker deltas
�n−n�,m−m� , �n−n�,−m+m�, and �n+n�,m+m� in the expression �1�
for the interaction matrix element contribute. As in the trans-
lationally invariant g-ology model, we now generalize the
interaction and assume different coupling constants for each
of the remaining low-energy scattering processes and each of
the relative spin orientations of the two particles. Doing so,
one can expect that the following low-energy RG analysis is
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applicable not only to the electron-gas model but also of
relevance for a larger class of models, including lattice ones.
For the interaction matrix element �1�, this leads to

2Lvn,m,n�,m�
s,s� = ��g1 �s,s� + �g1 �s,−s���n+n�,m+m�

+ ��g2 �s,s� + �g2 �s,−s���n−n�,m−m�

+ ��g4 �s,s� + �g4 �s,−s���n−n�,−m+m�.

The initial values of the generalized coupling constants are
functions of the microscopic parameters of the underlying
model. The relation between these two parameter sets can �in
principle� be determined by an additional RG step or simpler
by the perturbation theory. For the coupling constants, we
use the same notation14 g1, g2, and g4 as in the translationally
invariant g-ology model,19 while we still make clear that we
are dealing with a different situation by putting the spin ori-
entation index to the left of the g’s.20 Two reasons for this
become clear already at this stage of the discussion. In anal-
ogy to the standard g-ology, the �g1 term is the one which
cannot be written as a quadratic form in the bosonic density
operators of the right-moving electrons �for a detailed dis-
cussion on this, see Ref. 10�. Also in strict analogy, the �g2
and �g1 terms describe the same scattering processes �as can
be seen by reordering Graßmann fields and renaming indices
in the expression for S� and could be combined in a single
coupling constant �g2− �g1 �see also the RG flow equations
below�.

With these interaction matrix elements, one now has to
compute all �second order� connected diagrams of the two-
particle vertex related to the second term of Eq. �3� with all
the external quantum numbers k set to kF and the Matsubara
frequencies set to zero. Writing down the corresponding ana-
lytical expressions, it becomes immediately clear that only
the one-particle irreducible diagrams give nonvanishing con-
tributions. Furthermore, in complete analogy to the g-ology
RG of the translationally invariant model to leading order,
the g4 terms do not contribute to the RG flow of the coupling
constants �they do not lead to ln�b� terms� and do not flow
themselves. They only lead to a renormalization of the Fermi
velocity, which is a higher-order effect if the RG flow of the
couplings is considered. We thus neglect the g4 term. In a
straightforward but tedious calculation, we evaluated all the
remaining second-order diagrams with the topologies, as
shown in Fig. 1. The wiggled line stands for any of the four

coupling constants ��1, ��1, ��2, and ��2. We identified if a
certain diagram gives a finite RG flow of the vertex and if so
to which of the four scattering channels it contributes. To
perform the remaining k sum, we took the limit L→� �re-
sulting in a semi-infinite chain�. Setting b=es and resorting
to infinitesimal RG steps, this leads to the RG flow equations

d

ds ��1 = − ���1
2 + ��1

2� ,

d

ds ��2 = − ��1
2,

d

ds ��1 = − 2 ��1���2 − ��2 + ��1� ,

d

ds ��2 = − ��1
2, �4�

with

��l = �gl

�vF

for �= � ,� and l=1,2. The coupling constants � are now
understood to be functions of the infrared cutoff parameter s.

Remarkably, these equations are exactly the lowest-order
RG flow equations for the coupling constants �divided by
2�vF instead of �vF� of the translationally invariant g-ology
model.14 This provides the complete justification for the de-
cision to use the same notation. For the solution of the RG
equations and an analysis of the fixed points, we can proceed
as it is well documented in the literature.14 We first introduce
the coupling constant

�1,2 = ��1 − ��2 + ��2,

which leads to the RG flow equations

d

ds
�1,2 = − 2 ��1

2,

d

ds ��1 = − 2 ��1 �1,2.

From this, it becomes apparent that �1,2
2 − ��1

2 is invariant
under the RG flow, which implies that the RG trajectories
form hyperbolas in the ��1-�1,2 plane. The equations can
easily be solved and trajectories are sketched in Fig. 2. If
initially �for the initial cutoff� all coupling constants are
small and �1,2

i � ���1
i � holds, they all stay small �the use of

perturbative RG is justified� and the flow is toward a line of
stable fixed points with

��1
� = 0, �1,2

� = ���1,2
i �2 − ���1

i �2�1/2,

��2
� = ��2

i +
1

2
��1,2

� − �1,2
i � , �5�

indicated by the dashed line in Fig. 2. Under the above re-
striction on the initial coupling constants, the term, which

FIG. 1. Topology of the second-order diagrams contributing to
the RG flow.
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cannot be written as a quadratic form in the bosonic density,
is RG irrelevant. The initial value ��1

i of the ��1 term only
affects the fixed-point values of the other couplings.14 The
use of the open-boundary analog of the Tomonaga-Luttinger
model is then justified for studies on the low-energy physics
and the standard open-boundary bosonization6–10 can be
used. This allows to compute all correlation functions.6–10 In
the resulting expressions, the coupling constants ��2, ��2,
and ��1 must be replaced by the fixed-point values �5�.

For a model in which the coupling constants on the initial
scale of the weak-coupling RG do not depend on the relative
orientation of the spins of the two scattering electrons �like
the electron-gas model�, one finds �1,2= ��1 and ��1= ��1.

Therefore, the above condition on the initial couplings for
reaching a stable fixed point reduces to the simple require-
ment that the interaction must be repulsive. In this case, the
trajectory in Fig. 2 flows to the origin.

IV. SUMMARY

We have shown that under quite general assumptions on
the two-particle interaction, the terms, which are usually ig-
nored in bosonization studies on LLs with open boundaries,
are indeed RG irrelevant. These terms, which cannot be writ-
ten as quadratic forms in the bosonic densities, only affect
the fixed-point values of the other couplings but do not
modify the low-energy physics. For this analysis, we have
used a perturbative Wilson RG scheme. Although the scatter-
ing terms for open boundaries are of different nature than in
the translationally invariant standard g-ology model, we have
shown that the RG equations have exactly the same form.
Our result puts a large number of bosonization studies on LL
with open boundaries on a more solid ground. The present
discussion is limited to the weak-coupling regime. Numeri-
cal studies show that a similar low-energy physics can also
be found at larger �repulsive� couplings.10 We finally note
that exactly the same results can be obtained using the func-
tional renormalization group21 instead of the Wilson RG.22
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FIG. 2. Sketch of the trajectories of the weak-coupling RG flow
in the ��1-�1,2 plane �X= ��1 , Y =�1,2�. The dashed line indicates
a line of stable fixed points. The fixed points on the dashed-dotted
line are unstable.
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